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The fast-developing field of RNA nanotechnology requires the adoption and development of novel and
faster computational approaches to modeling and characterization of RNA-based nano-objects. We report
the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nano-
technology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the
dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale
scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and explor-
ing the dynamic characteristics of the models with ANM suggested relatively minor but important struc-
tural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and
in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both
methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally.
We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the
cube corners and showed that cube flexibility simulations help explain the differences in the experimen-
tal assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original
work paves the way for detailed computational analysis of the dynamic behavior of artificially designed
multi-stranded RNA nanoparticles.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In the process of constructing nanoscale shapes out of RNA, it is
now possible to incorporate RNA-based functional moieties such as
aptamers, riboswitches, ribozymes, or short interfering RNAs
(siRNAs), highlighting the capacity of RNA nanoscaffolds to simul-
taneously deliver specific therapeutics targeting selective human
tissues while controlling the composition and stoichiometry of
the delivered drugs [1–10]. These potentially therapeutic nanopar-
ticles utilize internal biochemical processes, such as RNA interfer-
ence (RNAi) that is activated by RNA markers to shut down
diseases at their source [11–13]. Techniques for constructing nano-
particles that can both diagnose and target diseased cells have gi-
ven RNA a new role in nanomedicine. Such functionalized
nanostructures are able to down-regulate specific gene expression
in cancerous cells, with positive results being confirmed by animal
studies [5,6,8,13,14]. All this suggests that RNA molecules may of-
fer a high degree of natural versatility and biologically relevant
functionality when used as building blocks in the construction of
nanomaterials [3,5,6,15–20]. The correspondences between the
fields of DNA and RNA nanotechnology, as well as the uniqueness
of each, are discussed in the following reviews [5,8,21].

Earlier work in RNA nanotechnology demonstrated the assem-
bly of modular RNA units into functional dimers [22–25], trimers
[10,26–29], tetramers [9,10], pentamers [10], hexameric nano-
rings [30–33], heptamers [10] together with non-functionalized
octameric squares [34], 1D and 2D arrays composed of filaments
[35], and tecto-squares [36]. Recently, we have explored the struc-
tural potential of RNA self-assembly for designing 3D supra-molec-
ular RNA architectures by engineering an RNA antiprism decorated
with proteins [37] and several different cubic nanoscaffolds [38,39]
functionalized with aptamers [38] and therapeutic siRNAs [7,33].
All these studies suggest that RNA nanoscaffolds have become
promising candidates for therapeutic purposes. Therefore, it is
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Fig. 1. Elastic Network Model (ENM) representation of RNA structures. (a) A small,
2 bp-long fragment of an RNA helix (red sticks) is overlaid with its ENM
representation. A set of network nodes (gray spheres) represents the initial
coordinates of a molecule. The nodes are connected with uniform springs
approximating interactions among them (grey lines). Connectivity based on a
cutoff distance of 3.5 Å is shown to make the illustration more legible. The
connectivity network captures intra and inter nucleotide, base pair and stacking
interactions. (b) The same two base pairs shown with a connectivity network based
on a cutoff distance of 7 Å, the parameter used in the Anisotropic Network Model
(ANM, a type of ENM) simulations in this study (see also Supplementary Figure S4).
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desirable to do detailed studies of the existing RNA nano-con-
structs in order to better understand and possibly improve their
further design and fabrication. In this work, we report on the com-
puter-aided design and analysis supported by experimental studies
that aim to improve the assembly properties of the existing RNA
cubic nanoscaffolds which are composed of six single-stranded
RNAs designed to interact with each other through canonical Wat-
son–Crick base pairing. These types of interactions are somewhat
analogous to those found in DNA-based nanoparticle formation
[39,40].

This is the very first application of Elastic Network Modeling to
large, multi-stranded and non-compact nano-scale structures engi-
neered from ribonucleic acids, in the effort to characterize their dy-
namic behavior. The limits of the dynamic distortions can help to
predict melting characteristics, the expected effective dimensions,
and to assess the potential impact of the differences in the dynam-
ics of the nanocube design variants on the efficiency of assembly,
and thus the experimental yield. Elastic Network Models and nor-
mal mode analysis offer fast and powerful methods to describe the
dynamic properties of molecules. Elastic networks are composed of
nodes and connecting springs, and with normal mode analysis they
can predict the biologically relevant low frequency collective mo-
tions of biomolecules [41–43]. The Gaussian Network Model
(GNM) introduced by Bahar et al. assumes a Gaussian distribution
of node fluctuations around their positions at equilibrium and uses
uniform springs (i.e. springs with a uniform harmonic spring con-
stant) [44]. GNM can be used to determine the magnitudes of net-
work node fluctuations, which are assumed to be the same in all
directions, i.e. isotropic. The Anisotropic Network Model (ANM),
used in this study, takes into account the directionality of the posi-
tional fluctuations by calculating for each node of the network
their fluctuation vectors in addition to their relative magnitudes
of motion [45,46]. Compared to Molecular Dynamics (MD) simula-
tions, the ANM calculations take orders of magnitude less time. For
example, an all-atom (i.e. each atom is a network node) ANM cal-
culation of the top 150 modes of a nanocube assembled out of a to-
tal of 288 RNA nucleotides (9134 atoms) takes approximately
42 min on a single 3.0 GHz Intel Xeon processor workstation,
whereas an explicit solvent Molecular Dynamics trajectory of
approximately 50 ns would take from two weeks to a month to
compute, depending on the choice of processors. A recently pub-
lished method for characterizing nanoscale models employs sym-
metry with hierarchical degrees of freedom [47,48]. It combines
all-atom energy functions with fast sampling to find favorable
structure states.

This paper is organized to follow the logic of our computational
and experimental work, which informed each other, to optimize
and characterize the cubic nano-scaffold designs. Results are
immediately discussed to aid the presentation. First, we present
in detail the in silico design of eight cube variants, in which the
helical edges of either 10 or 11 bps long were connected in the
cube corners by single-stranded bridges varying in size from 1 to
3 nt and a design without any single-stranded links. The initial
modeling also included optimization of the helix sizes. The pre-
dicted design strengths and weaknesses were verified in a series
of assembly experiments that excluded, as computationally pre-
dicted, the unbridged (0 nt) cubes from further consideration.
Next, we present the determination of the nanoparticle sizes. The
sizes of the assembled nanocubes were measured via Dynamic
Light Scattering (DLS) experiments that indicated nanoparticles
of sizes larger than those of the initial models. Therefore, we re-
scaled our models and characterized their flexibility (distortion
limits) as a way of determining their potential apparent size
changes with the aid of the Anisotropic Network Model. The sizes
of the distorted cubes matched the DLS results, and the distortions
of the initial models were energetically neutral. Finally, we present
examination of the relative strains and stabilities of the cubes’
components and their possible relationship to the melting proper-
ties of the two best (most efficiently assembling) cube designs. The
melting temperatures of the two best-assembling nanocubes were
obtained by Thermal Gradient Gel Electrophoresis (TGGE) experi-
ments. Computational analysis of the cubic nanoscaffold models
revealed clear differences in their stiffness and in the computed
B-factors. These results seem to reflect the melting temperature
differences. Thus, we showed that the computational design and
characterization of the nanoscaffolds can improve the assembly
properties and help in predicting and explaining the characteristics
of the assembled nanoparticles.
2. The use of coarse-grained structure dynamics
characterization with ANM

While we have shown in the past that it is possible to employ
Molecular Dynamics to characterize even relatively large nano-
structures, the method is computationally intensive and time con-
suming [49]. Therefore, in this study we employed an Elastic
Network Model (ENM), specifically the Anisotropic Network Model
(ANM), to characterize the dynamic properties of an RNA nanoscaf-
fold with different structural design parameters. The ANM meth-
odology is capable of predicting both relative magnitudes and
directions of the major modes of motion (normal modes) of a mol-
ecule. Refer to the Methods section for more details on ANM and to
Brooks et al. [50] and Atligan et al. [45] for a mathematical descrip-
tion of the method. Unlike Molecular Dynamics (MD) simulations,
which model motions of all atoms based on empirically derived
force fields [51–53], ANM focuses on the harmonic motions of a
set of points (network nodes) representing the initial coordinates
of a molecule. These points are connected with springs
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approximating interactions among them, as illustrated in Fig. 1.
Even though it is a coarse-grained method, it has been shown that
the predicted motions correspond closely to the principal compo-
nents derived from MD trajectories, multiple crystal structure con-
formations, or NMR ensembles [42,54]. Numerous studies
comparing ANM-predicted motions with the available experimen-
tal data demonstrated applicability of the method to characteriza-
tion of naturally occurring proteins, protein–RNA complexes and
self-folded single-stranded RNAs alone [55–59]. For example,
Wang et al. [57,58] showed that ANM-based lowest frequency nor-
mal modes can predict anti-correlated, experimentally known
ratchet-like motions of the ribosomal subunits [60] within the full
ribosome, as well as motions facilitating translocation of tRNA in-
side the ribosome (based on the crystal structures PDB#: 1J5E,
1GIY and 1GIX reported by Wimberley et al. [61] and Yusupov
et al. [62]). These studies demonstrated that the dominant motions
predicted by ENMs for a representative structure correspond to the
ensembles of experimentally captured conformational variants.
The emerging consensus is that the collective motions of structural
domains are responsible for the major, biologically relevant, low
frequency motions of molecular structures, that these motions de-
pend mostly on the shape of the molecules, and that they are well
characterized by ANMs. In addition, it has been shown that elastic
networks are capable of reproducing experimentally measured
B-factors [42,44,63–65]. In this study we present a successful
application of the ANM methodology to characterization of mul-
ti-stranded, engineered RNA-based nanoparticles that are less
atomistically dense than the natural RNAs (in terms of number of
atoms per unit volume).

The ENM-based calculations are orders of magnitude faster than
MD simulations for the same molecules. Whether the nodes of the
network correspond to all the atoms of the simulated molecule or a
coarse-grained subset of it, which influences the speed of compu-
tations, the complexity and time of calculations can be further re-
duced by limiting the number of modes to be calculated. This
focuses the calculation on the relatively small subset of lowest fre-
quency modes, which are responsible for the majority of total mo-
tions. The high frequency modes capture localized motions that do
not impact the overall dimensions of the structures, and thus, can
be viewed as irrelevant to this study and ignored.
3. Computational and experimental nanocube design and
assembly

Computational design of eight cube variants is outlined in the
next section and discussed in more detail in the Supporting Infor-
mation. The helical edges of the cubes were designed to be con-
nected by single-stranded bridges from 1 to 3 nt long. However,
a design variant without any single-stranded links was also ex-
plored. The computer modeling phase also optimized the helix
sizes on the cube edges, considering either 10 or 11 bps in each he-
lix. The predicted design strengths and weaknesses were verified
by assembly experiments. As it was predicted in silico, the cube de-
sign without any single-stranded linkers (i.e. unbridged, 0 nt) has
been eliminated from further consideration.
3.1. Computational generation of RNA cube models predicts best
design choices

Key design considerations in the RNA cube structure design are
(i) the number of base pairs the helices should contain and (ii) the
number of residues at the single-stranded corner loop regions
(each corner can be viewed as an internal loop with the emanating
helices, or a three-way junction). Both of these questions have
been successfully addressed using several novel approaches to
RNA 3D modeling. In Fig. 2, we present a general method for gen-
erating RNA 3D structural models. This approach (called the helix-
centric approach) can be viewed as a coarse-grained method that
places helices (treated as rigid bodies) such that the flanking resi-
dues of the helical strands are to be connected within a specified
distance range. This is modeled within the NanoTiler [66] software
as a special type of constraint, called a ‘‘junction constraint.’’ A
junction constraint is a data structure that can be used to compute
a score that indicates how well a set of n helix ends could form an
RNA n-way junction (a cube-corner in this case), possibly involving
single-stranded linker regions that connect the flanking residues.
The junction constraint data structure keeps track of which helix
ends form a junction, and the minimum and maximum distance
between the 30 and 50 residues that are to be connected. Once
the junction constraints are specified, a simulated annealing algo-
rithm optimizes the helix orientations using as an objective func-
tion the sum of the junction constraint scores as well as a
repulsive potential that favors structures without steric clashes.
For the case of the RNA cube, an additional constraint of 4-fold
rotational symmetry (C4) has been applied (see the Supporting
Information). In other words, instead of optimizing the position
of 12 helices (corresponding to the 12 edges of the cube), the posi-
tions of only 3 helices are optimized; the remaining helices are
treated as symmetry copies. The number of base pairs per helix
as well as the maximum distance between the terminal residues
of the strands that are to be connected can be viewed as parame-
ters. The results of this procedure indicated that 10 nt helices cor-
respond to 3D structural models with the smallest amount of steric
hindrance. The identified minimal loop distance of 8 Å suggested
that the cube corners should be at least 1 nt. The Supporting Infor-
mation contains detailed descriptions of this and two other vari-
ants of the cube model generating procedures. Uracils were
selected for use in the single-stranded corner linkers due to their
small size, and because in the long term they are particularly suit-
able to co-transcriptional chemical modification increasing the
resistance of the full nanoparticle to ribonucleases [33].

3.2. Native PAGE experiments justify design choices

To check the computer aided predictions, eight design variants
with identical sequences but different numbers of Us (0, 1, 2, or 3)
at the corners and a different number (10 or 11) of bps per cube
side (sequences are presented in the Supporting Information) were
engineered and tested by gel experiments (Fig. 3b). The native
polyacrylamide gel electrophoresis (native-PAGE) is an electropho-
retic separation technique typically used for characterizations of
radiolabeled RNA assemblies [25,67,68]. Native PAGE separations,
shown in Fig. 3b, are run in non-denaturing conditions with major
dark bands corresponding to the main products of the assemblies.
These products are electrophoretically separated based on their
molecular mass, intrinsic charge and more importantly size and
shape of the overall structure. The more complex assemblies mi-
grate on the gel at lower rates hence, staying closer to the loading
well. Major dark bands on the gels shown in Fig. 3b correspond to
the main products of the assemblies. Assembled RNA cubes are ex-
pected to migrate as a single band with the lowest mobilities
(upper bands). The native PAGE results indicate that the designs
without any Us at the corners tend to aggregate and do not form
any desirable nano-scaffolds. Designs with 1U at the corner assem-
ble with yields not exceeding 50%, while constructs with 2 and 3Us,
show reproducible assemblies with yields higher than 95%. The in-
crease in lengths of the cube sides from 10 to 11 bp, negatively af-
fects the results of all assemblies. All results are in a good
agreement with the computer modeling estimates and prove that
the dimensions of the cubic RNA nanoscaffolds play a critical role
in their formations. The 2U cube formation has also been verified



Fig. 2. Nanocube model building procedure employing the NanoTiler program: helix-centric approach. This figure illustrates geometric aspects of the design procedure. Refer
to Fig. 3 for the illustration of how this cube is experimentally assembled from six single strands of RNA. (a) Atomic coordinates of 3 idealized RNA double-helices (b) Two
‘‘junction constraints’’, indicated as J1 and J2 are defined, corresponding to two cube corners (purple). Each junction constraint defines a connectivity of a 3-way junction (a
cube corner). It keeps track of the 30 and 50 ends of the helices that are connected by single-stranded regions (simulated as distance constraints). Notably, only the helices a1,
b1 and c1 are represented by virtual atom coordinates. The other helices are mirror copies (due to the fourfold rotational symmetry, indicated as C4) and are not at this stage
represented by atom coordinates. For example, helix a4 is a 270 degree rotational copy of helix a1. The positions of the helices a1, b1 and a4 contribute to the junction
constraint J1; the positions of the helices b1, c1, and c4 correspond to the junction constraint J2. (c) The positions of the three helices a1, b1 and c1 are optimized in order to
minimize the sum of the error scores that corresponds to the junction constraints J1 and J2. Only coordinate systems representing translational and rotational offsets of those
three helices are being optimized; i.e. those 3 helices are treated as rigid bodies. (d) Using rotational symmetry copies, atom coordinates for all 12 helices of the cube are
generated. These steps also involve a visual or automated inspection of the generated structure, because the generated structure might contain steric clashes. (e) Bridging
loops consisting of 2 nucleotides are generated using NanoTiler. Only 6 bridges, corresponding to two cube corners (indicated as purple ovals) are distinct. All other loop
regions are symmetry copies of those initial loop regions. (f) Strands are fused and nicks are inserted at the appropriate positions. The original place-holder sequence is
mutated to the desired final sequence. The steps in stage f break the fourfold rotational symmetry.
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and explored experimentally by other methods in an earlier study,
including imaging by cryo-electron microscopy (cryo-EM) [38].

4. Experimental and computational determination of
nanocubes’ sizes

As determined by the Dynamic Light Scattering experiments,
the sizes of the assembled nanocubes were larger than those of
their initial in silico models. This finding led us to scale-up (and re-
build) our models and predict their distortion limits with the aid of
the Anisotropic Network Model. The potential apparent size
changes predicted by the ANM matched the experimental results.

4.1. Dynamic Light Scattering (DLS) experiments

Using Dynamic Light Scattering (DLS), the hydrodynamic radii
(Rh) of the RNA cubes with a different number of Us per corner
were determined to be 5.8 ± 0.15, 6.7 ± 0.5, and 7.8 ± 0.1 nm for
cubes with 1U, 2Us and 3Us, respectively (Fig. 3a). For the 2U cube
the dimension determined from the Cryo-EM data was approxi-
mately 7.0 nm. Also, the peak of larger assemblies in the DLS plot
(Fig. 4a) for 1U cube is consistent with the native-PAGE experi-
ments (Fig. 3) demonstrating approximately half of the cube frag-
ments assembled in malformed constructs with lower gel
mobilities. The DLS experimental values match well the predicted
radii of circumscribed spheres around the geometric cubes,
assuming an ideal geometry of a cube and idealized A-form helix
dimensions. However, the more accurate models we are dealing
with here have truncated corners because of the single-stranded
corner bridges (Fig. 4b and 5a), and their initial sizes (of 4.8, 5.3,
and 6.1 nm for 1U, 2Us and 3Us cubes, respectively, measured as
the maximum radii from the all atom centroid) fall short of the
experimental data (Fig. 4a). For this reason we explored the
changes in the apparent cube dimensions, as described in the fol-
lowing computational sub-section. The results considering the
dynamics of the models showed very good agreement with the
DLS data.
4.2. Applying ANM to predict the size limits of nanocube motions

Because the initial cube model dimensions were smaller than
the DLS-based experimental results, we rebuilt the models in
search for maximum sizes that would retain the original topology
(base pairing) after energy minimization in Amber. Such models’
dimensions still fell short of the DLS results. Therefore, they were
subjected to Anisotropic Network Model (ANM) simulations in or-
der to explore other dynamic states that could increase the appar-
ent sizes of the models. The methodology developed in this study is
described in detail in the Supporting Information. Briefly, combin-
ing ANM dynamics and Amber minimizations required using all
atom models (see Supplementary Fig. S4) [51–53]. Analysis of
the ANM normal modes indicated that the majority of motions of



Fig. 3. The sizes of the cube corners define the efficiencies of the cube assemblies. (a) 3D models of the cube junctions that were generated to find the minimum number of
nucleotides required to link corner helices. The nucleotides indicated in red are the end base pairs that are connected to the single stranded uracil bridges (not shown). The
structures correspond to linker loop sizes of 0–3 uracils (Us) respectively. These linker loop sizes are simulated as distance constraints between edge O3́ and P atoms of helices
that are designed to be linked. Structure 0U has a distance constraint of maximally 4 ÅA

0

distance between O3́ and P atoms. This corresponds to no linker loops and the structure
has significant steric clashes. A larger distance constraint (1U) of maximally 9 ÅA

0

corresponds to a structure with 1 residue linker regions. The structural model suggests that
the electrostatic interactions between the negatively charged phosphate groups could be somewhat unfavorable and that the cube formation would benefit from the linkers
being at least 2 nt-long (structures 2Us and 3Us). (b) native-PAGE experiments indicating the assembly patterns of the RNA nanocubes having zero, one, two, and three single-
stranded corner uracils (0U, 1U, 2Us, and 3Us, respectively) and corresponding cubes with additional base-pair per each side (11 bp). Color-coded three-dimensional and two-
dimensional schematic representations of interactions for the A-F cube sequences (shown to the left of the gel lanes) and schematic representations of cube corners (above
the gels) are shown. Corresponding sequence strands are indicated above each lane of the gel.
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the studied nanocubes are captured by the first 25 modes. Most
importantly, the largest distortions to nanocube geometry, a focus
of the ANM simulations in this study, were observed in the top 6
modes for all the models. The largest distortions pushed the cube
models to the limits of internal steric clashes, but those states
could be structurally cleaned-up (corrected) and minimized to a
nearly constant energy level for each cube, as shown in Fig. 4c.
For this reason we concluded that collisions limited the maximum
extents of the cube distortions, and that such dynamic states could
correspond to the maximum observable nanoparticle sizes and
should be analyzed further. The key results are discussed next
and illustrated in Fig. 4b and c.

The dimensions of the initial computational models (maximum
radii from the all atom centroid) were 47.7, 52.7, and 60.9 Å for the
1U, 2U, and 3U-bridged corner cube models, respectively. The Am-
ber-minimized ANM-distorted cube models increased their maxi-
mum dimensions. By overlaying the Amber-minimized normal
mode motions states for the top 6 ANM modes we created distor-
tion envelopes illustrated in Fig. 4b. The measured maximum radii
for the distorted cubes were 56.4 Å for 1U, 68.2 Å for 2U, and 78.0 Å
for the 3U cube model. These are approximately 97%, 102%, and
100.0% of the DLS-based (hydrodynamic) radii for the 1U, 2U,
and 3U cubes, respectively. Higher modes produced distortions
resulting in lower maximum radii and are not shown in Fig. 4b
for the sake of clarity. The absolute increases in the radii of the
maximally distorted 1U, 2U, and 3U cubes, relative to those of
the starting models, are 8.7, 15.5, and 15.9 Å, respectively. These
represent a relative increase of 18% for the 1U cube, 29% for the
2U cube, and 26% for the 3U cube. Another striking difference be-
tween the cube models is that the eigen values calculated for the
1U cube model are an order of magnitude larger than those pre-
dicted for the 2U and 3U cube models (the last two are comparable
with each other). Because eigen values correspond to the inverse
squared motion frequencies these results indicate that all the mo-
tions of the smallest cube have higher frequencies, and this obser-
vation is consistent with the hypothesis that the 1U cube is much
more restrained in its motions by the tight corner bridges.
5. Melting properties of the cubes

Given the above results that bring modeling and experiments
into agreement, further exploration of the cube dynamics was
undertaken with the idea of gaining insight into the observed



Fig. 4. Predicted and measured dimensions of the nanocubes with 1U, 2U and 3U single-stranded corner linkers, connecting 10 bp-long helical edges. (a) Dynamic Light
Scattering (DLS) experiment results for RNA nanocubes having one, two, and three single-stranded corner uracils respectively (1U in yellow, 2Us in red, and 3Us in blue). (b)
Colored models of the maximum size cubes (refer to the text for details); dark yellow for the 1U cube, red for the 2U cube, and blue for the 3U cube. Top views show cube
faces, while the bottom views focus on one of the truncated corners linked with single strands. The transparent gray envelopes of motion around the cubes illustrate
maximum extents of the distortions predicted by the ANM simulations for the top six normal modes. The envelopes delineate the increase in the apparent dimensions of the
cubes due to distortions of their initial shapes, which bring them into agreement with the experimentally observed results. (c) The energy plots for the 1U, 2U, and 3U cubes
(color-coded as elsewhere) based on the minimized energies of the starting models (relative deformation of 0) and the maximum distortions (�10 and +10). Relative
deformations correspond to structural snapshots at discrete points in the calculated distortion trajectories. Data for the top six modes of motion is shown, with mode 1 being
the closest to the viewer. The plots show nearly flat (within a fraction of one percent) energy landscapes for the top 6 mode distortions, indicating free mobility of the models
to the limits of steric clashes. Refer to the text for details.
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melting temperature differences between the two larger (2U and
3U) and better self-assembling cubes.

5.1. Thermal gradient gel electrophoresis (TGGE) experiments

To determine the relative thermodynamic stability between the
cubes having either 2Us or 3Us at each corner (Fig. 5a), melting
temperatures for these constructs were determined by TGGE
experiments (Fig. 5c). In these experiments (Supporting Informa-
tion, Supplementary Fig. S1), the fractions of the cubes (f) derived
from the gel quantifications are plotted versus the corresponding
temperatures and the temperature at which f = 0.5 is the melting
temperature, Tm. The Tm

’s for the cubes with 2Us and 3Us were
measured to be 54.4 and 57.8 �C, respectively and are in a good
agreement with UV melting experiments (data not shown).

5.2. Calculating the relative strain and flexibility of cubes’ structural
components

We have also analyzed the cumulative mobility of the individ-
ual atoms (network nodes) predicted by ANM across the first 6
modes (Fig. 5b). The plotted values are mean-square fluctuations,
which are comparable to B-factors [42,63–65]. Although we do
not have experimentally measured B-factors, which could be used
to normalize the calculated data, we did scale the individual mode
amplitudes based on the available physical parameters for each
cube model, i.e. structure energy and physical collision limits. In
the calculations of the B-factors, the contributions of individual
modes were normalized based on the maximum amplitude scaling
factor for each nanocube, allowing us to compare the three cube
models (refer to section Applying ANM to predict the dimensional
limits of nanocube motions and the Supporting Information).

The mean scaled B-factor values calculated for all atoms (and
normalized by the number of atoms in each cube model) show a
large gap between the values for the 1U and 2U cubes and a smal-
ler but clear difference between the 2U and 3U cube models sub-
jected to ANM. For example, for the first non-zero mode (lowest
frequency), the values are 0.2 ± 0.1, 1.2 ± 0.9, and 2.1 ± 1.5 for the
1U, 2U, and 3U cubes, respectively. This trend holds for the means
of the first six modes taken cumulatively, for which the 1U, 2U, and
3U cube B-factors are 0.4 ± 0.2, 4.8 ± 1.4, and 5.6 ± 1.7, respectively
(see Fig. 5b). The difference in the median values between the cal-
culated scaled B-factors for the top 6 modes (cumulatively) for the
2U and 3U cubes, 4.6 and 5.3, respectively, showed a statistically
significant difference using the Mann–Whitney test with a p-value
p < 0.001. The same is true for the other pair-wise comparisons of
the calculated B-factors. Comparisons between the cubes also
show that the calculated B-factors for the atoms of only the corner
nucleotides (i.e. evaluated separately) grow with the increase in
their length and are statistically significantly different between
the pairs of compared cube models (means at 0.6 ± 0.2, 4.5 ± 0.7,
and 4.9 ± 1.2 for the 1U, 2U, and 3U cube corner bridges,



Fig. 5. Structural dynamics yields insights into melting temperature differences between the 2U and 3U cubes. (a) Two views of the maximum size (refer to the text for
details) overlaid models of the 2U (red) and 3U (blue) cubes, featuring the truncated corners linked with single strands of uracils (left) and the cube faces (right). In both cubes
the helical, 10 bp-long edges have the same nucleotide make-up. (b) Box plots of the calculated normalized B-factors (top) and the geometric distortions in the helices
(bottom). In both plots the medians are marked as horizontal lines inside each box, and the 25th and 75th percentile values are indicated by the bottom and the top extents of
the boxes. Error bars below and above each box indicate the 10th and 90th percentile values. Outliers are shown as overlapping black dots. In the top plot, the B-factors were
calculated for the top 6 normal modes of motion (cumulatively) for all the atoms in each of the three cube models (in arbitrary units, marked as AU). The difference in the
atomic fluctuations in the 1U cube and the 2U and 3U cubes is striking, but the smaller difference between the atomic mobility in the 2U and 3U cubes is also statistically
significant. The median values for the 1U, 2U and 3U cubes are, respectively, 0.4, 4.6, and 5.3. Pair-wise comparisons of the data sets show statistically significant differences
with the p-value P =< 0.001 in Mann–Whitney tests. The lower box plots capture geometric distortions measured for the helices of the three cube models subjected to normal
mode motions. Helices in the 2U and 3U cubes experience minimal distortions while the motions of the whole cubes increase with their size (top b panel). RMSDs were
calculated for the P atoms of the helical backbones, between the initial ANM states and the extreme distortion frames in the top 6 normal modes. The median values for the
1U, 2U and 3U cubes are 2.5, 1.1 and 1.1 Å, respectively. The differences between the 2U and 3U cube helix distortions are not statistically significant. Together with the
energy data calculated for the cubes (refer to the text), the results shown in (b) suggest that corner linkers contribute to the melting temperature differences measured for the
2U and 3U cubes. (c) Melting curves obtained from thermal gradient gel electrophoresis (TGGE) analysis for the nanocubes with two and three corner uracils (2Us and 3Us,
respectively). From the TGGE experiments (Supporting Information, Fig. S1), Tm for 3Us cubes was determined to be higher by �3.5 �C than for the cubes with 2Us. These
results are in a good agreement with UV melting experiments (data not shown).
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respectively). The rate of increases in the B-factors of the helical re-
gions (the sets of twelve helices making up each cube are identical
in size and sequence in all the cube models) is even faster (means
of 0.4 ± 0.1, 4.9 ± 1.4, and 5.7 ± 1.8 for the 1U, 2U, and 3U cube heli-
ces, respectively). This measure, however, may be due to collective
motions or relatively undistorted helices and requires further
examination, as described below.

The geometric distortions of the helices in all the cube models
for the top 6 normal modes were measured by calculating the
root-mean-square deviations (RMSDs) for the helix backbone P
atoms between the ANM equilibrium state and the previously
determined maximum distortions in each mode (all after struc-
ture-correcting full cube energy minimizations). The results show
that in the 2U and 3U cubes the helices undergo minimal distor-
tions in the top 6 normal modes (see Fig. 5b). The mean RMSDs
of the 2U and 3U cubes are 1.2 ± 0.4 and 1.2 ± 0.5 Å, respectively.
The differences in RMSDs between the corresponding P atoms of
the 2U and 3U cube helices are not statistically significant
(P = 0.798, Mann–Whitney test). The 1U cube helices experience
statistically significant higher distortions in comparison to the 2U
and 3U cubes (P = <0.001, Mann–Whitney test). The mean RMSD
value of these distortions in the 1U cube model is 2.8 ± 1.2 Å. In
general, distortions of the opposite cube faces tend not to be sym-
metric. Thus, considering that the helices in the 2U and 3U cubes
experience minimal distortions while the motions of the whole
cubes increase with their size, the calculated B-factors point to
the nucleotides in the single-stranded corner bridges as individu-
ally most mobile, or flexible. The distortion ‘‘trajectories’’ which
can be viewed as movies for individual normal modes, also clearly
show that all the cubes tend to use the corner linkers as pivot
points in bending (see Supplementary Fig. S5). The idea that the
stress of distortions is relieved in the single-stranded corner
bridges appears to be consistent with the observed flat energy
landscape of the minimized distorted cubes. Motions in the helical
regions observed in the top normal modes are either collective
rotations or translations around the corner bridges. Torsional com-
pressions and elongations mostly affect the helices in the 1U cube.

The energy of the minimized 1U cube is �60,197 kcal/mol. For
the 2U cube it is �64,691 kcal/mol, and for the 3U cube it is
�68,824 kcal/mol (see Fig. 4c). However, these differences are in
part due to different numbers of nucleotides in each model. To as-
sess the strain that each cube model exerts on its helices, which
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have identical sizes and sequences in all models, we calculated the
energies of the helices alone in the minimized full cube models.
These results were �33,682 kcal/mol, �34,606 kcal/mol, and
�36,396 kcal/mol for the 1U, 2U, and 3U cube helices, respectively.
They can all be minimized (relaxed in the absence of the single
stranded bridges) to a common level of approximately -
53,000 kcal/mol. The elevated energy components point to
stretched bond lengths and distorted angles as the main contribu-
tors, i.e. again, strain resulting from geometric distortions. These
results indicate clearly that the most geometrically constrained
1U cube subjects its helices to most strain (distortions) and that
the longer the single-stranded corner bridges (within the tested
limits from 1 to 3 nt), the less strain (distortion) on the helices
(i.e. the lower their energy).

Thus, we have shown that the mean mobility of the cubes in-
creases with the increase in the length of their corner bridges. At
the same time the strain of the helices, indicated by the decrease
in their energies measured within the context of the full cube mod-
els, decreases with the increase in the length of the corner bridges.
Low geometric distortion levels were measured for helices sub-
jected to the predicted normal mode motions of the cubes. These
low geometric distortions, especially low for the 2U and 3U cubes,
indicate that the helices are moving as minimally distorted units.
Combined, all of these observations indicate that the differences
in the single stranded regions are a key factor contributing to the
observed melting temperature increase in the 3U cube relative to
the 2U cube. One could argue that the flexibility of the single-
stranded corner linkers adds to their entropy with the increasing
length. In addition, one has to remember that, even though we fo-
cused on the maximum-sized cubes, the 2U and 3U linkers can
accommodate a large variability of separations between the heli-
ces, thus adding to the number of possible states of the cubes.
For example, relative to the initial model of the 2U cube, (see sec-
tion Computational generation of RNA cube structures justifies de-
sign choices) the maximum size used in ANM simulations
increases the distances between the helices parallel to each other
by 15%. For the 3U cube it is 21%. Thus, the number of states, even
before all the distortions are considered, is growing with the
increasing length of the single-stranded linkers. It is also reason-
able to assume that the occurrences of reversible base-pair breaks
within the helical ends nearest to the single-stranded corner links
are more likely for the less strained helices connected with longer
single-stranded bridges. All of the above observations combined
are in good agreement with the experimentally measured melting
temperature differences for the 2U and 3U cubes, illustrated in
Fig. 5. In addition, the much more limited flexibility of the 1U cube
may explain the experimental evidence of a much lower experi-
mental efficiency of its assembly (yield). It may be that in the de-
sign where the full nanostructure assembly requires six strands
to anneal together, the flexibility needed for the whole process to
succeed is negatively impacted by the 1U corners, leading to the
observed approximately 50% success rate. The larger dimensions
of the species in the second DLS peak (Fig. 4a), too large to corre-
spond to properly formed 1U cubes, suggest that these are un-
known malformed species, the characterization of which is
beyond the scope of this paper.
6. Conclusion

In summary, we have demonstrated the power of rational de-
sign and, to the best of our knowledge, the very first application
of coarse-grained Elastic Network Modeling to designed multi-
stranded, non-compact nano-structures made out of nucleic
acids. Initial design exploration with the aid of the NanoTiler
program indicated that single-stranded bridges linking helices
in the cube corners are necessary for assembly, and that
10 bps, rather than 11 bps long helices forming the edges of
the nanocubes would produce less-strained and better assem-
bling nanoparticles. These findings were confirmed experimen-
tally. Evaluation of another design factor – the lengths of the
single-stranded corner linkers – required characterization of
the dynamics (flexibility) of the nanoparticles. ANM proved to
be a sufficiently precise method to evaluate the gross dynamic
characteristics of the three cube designs and to differentiate be-
tween them. ANM simulations of the three nano-cube variants
showed that flexibility of the models has to be considered in or-
der to account for the experimentally measured dimensions. The
initial cube model sizes fall short of the DLS data, whereas the
dimension changes resulting from the predicted distortions of
the initial cube models are in excellent agreement with the
experimental data. One has to keep in mind that our evaluations
are based on the lowest frequency normal modes and each mode
is used independently. It is possible that the combination of
multiple modes would further increase the maximum dimen-
sions of the cube models. However, at this stage we have no
means (no phasing information) to accurately combine the
modes. One way of partially exploring this combinatorial prob-
lem could be by starting the combined simulations with the
same phase for all the modes and letting the frequency differ-
ences between them naturally shift the relative mode phasing
over long periods of time. We are currently exploring this issue
and hope to report on it in the future. Cube characterization via
ANM revealed more constrained motions in the 1U cube in
terms of absolute increases in the maximum dimensions, relative
to the 2U and 3U cubes, as well as an order of magnitude higher
frequency of motions in the 1U cube. Flat energy landscapes for
the deformations in all the cubes indicated that the differences
in their deformability are solely due to limitations imposed by
the steric clashes resulting from deformations. These characteris-
tics are consistent with the experimentally observed �50% lower
assembly yield for the 1U cube. Computational characterization
indicated elevated energy levels calculated for the helices (alone)
in the cubes with shorter corner bridges, indicating more strain
in the 2U cube than in the 3U cube. The relative geometric dis-
tortions levels of the helices in the 2U and 3U cube modes sub-
jected to normal mode motions are indistinguishable. At the
same time the differences in the flexibility of the 2U and 3U
cubes, as captured in the calculated B-factors, indicate their rela-
tionship with the single-stranded corner link lengths. These re-
sults taken together are consistent with the difference in the
melting temperatures measured for the 2U and 3U cubes. The
longer single-stranded corners can tolerate more motion inher-
ent to the higher temperature environment.

In summary, we demonstrated how computational RNA 3D
modeling can be used to optimize nanostructure design deci-
sions, and help predict the best experimental strategy. A detailed
discussion of the design approaches that can be adapted to
building models of different nanostructures and sample
NanoTiler scripts used in nanocube modeling are provided in
the Supporting Information. Following the previously validated
application of the ANM methodology to naturally occurring nu-
cleic acids and their complexes, we have demonstrated here a
successful application of this modeling method to less dense
(less structurally compact), multi-stranded engineered RNA-
based nanoparticles. The methodology presented, combining
the optimization of the geometric aspects of the design with
the help of NanoTiler and the characterization of the nanostruc-
ture dynamics via coarse-grained ANM simulations that are or-
ders of magnitude faster than Molecular Dynamics and
effectively capable of dealing with much larger structures, is
generally applicable in the field of RNA-based nanobiology.
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7. Experimental and computational procedures

Listed below are details of the experimental and computational
protocols used and developed for this study. Further extensions
and discussions are included in the Supporting information.

7.1. Experimental methods

7.1.1. RNA preparation
RNA molecules were prepared by transcription of PCR amplified

DNA templates. Synthetic DNA molecules coding for the antisense
sequence of the designed RNA were purchased from IDT DNA and
amplified by PCR using primers containing the T7 RNA polymerase
promoter. PCR products were purified using the QiaQuick PCR puri-
fication kit and RNA molecules were prepared enzymatically by
in vitro transcription using home-made T7 RNA polymerase. Sam-
ples were incubated at 37 �C for four hours in a buffer containing
15 mM MgCl2, 2 mM spermidine, 50 mM Tris buffer (pH 7.5),
2.5 mM NTPs, 10 mM DTT, 0.1 lg/ll IPP, and 0.8 u/ll RNAsin; the
reaction was quenched by adding 5 ll of RQ1 RNAse-free DNase
(10 u/lg) for a reaction volume of 200 ll, followed by 30 additional
minutes of incubation. Samples were purified on a denaturing urea
gel (PAGE) (8% or 10% acrylamide, 8 M urea). The RNA was eluted
from gel slices overnight at 4 �C into buffer containing 300 mM
NaCl, 10 mM Tris pH 7.5, 0.5 mM EDTA. After precipitating the
RNA in two volumes of 100% ethanol, samples were rinsed twice
with 90% ethanol, vacuum dried, and dissolved in TE buffer.

7.1.2. [32P]Cp labeling of RNA molecules
T4 RNA ligase was used to label the 30-ends of RNA molecules by

attaching [32P]Cp. Labeled material was purified on denaturing
polyacylamide gels (8% or 10% acrylamide, 8 M urea).

7.1.3. Non-denaturing PAGE experiments
All constructs were annealed as per the desired protocol de-

scribed earlier [7,38]. Once assembled, the RNA solutions were
placed on ice and combined with an equal volume of loading buffer
consisting of 2 Mg(OAc)2, 50% glycerol, 0.01% bromophenol

7.1.4. Thermal gradient gel electrophoresis (TGGE) experiments
For TGGE experiments, analysis was performed with 2 mM

Mg(OAc)2, and a linear temperature gradient, typically from 40 to
70 �C, was applied perpendicular to the electric field. Cube concen-
tration was typically 1 lM. Gels were run for 1 h, at 30 W.

7.1.5. Dynamic Light Scattering
For DLS, 50 lL of sample solution containing preassembled RNA

cubes were measured by a DynaPro NanoStar (Wyatt Technology,
Inc.) at a wavelength of 662 nm. Samples were kept on ice until
the time of measurement, and measured at 25 �C under a constant
flow of nitrogen gas. Both acquisition time and the number of
acquisitions for each batch measurement varied between 5, 10,
15, and 20. The theoretical Rh

’s were calculated by measuring the
distance between the center of mass and the most-distant atom
of the cube 3D CPK model

7.2. Computational methods

7.2.1. Modeling
Cube models were produced with the aid of our program

NanoTiler. The tool has been described in detail in Bindewald
et al. [66]. The algorithm used is described in detail in sections
on computational nanocube design exploration and ANM-pre-
dicted nanocube motions in the body of the text and in the Sup-
porting Information. A sample NanoTiler script that outlines the
construction of the initial model of a nanocube with 2U corner
bridges is provided with the Supporting Information. The program
NanoTiler is available for downloads from http://
www.ccrnp.ncifcrf.gov/~bshapiro/software.html.

7.2.2. Anisotropic network model
Anisotropic Network Models are constructed using the follow-

ing procedure. First, for a network reflecting the three-dimensional
coordinates of the modeled molecule (with a chosen granularity) a
connectivity matrix is constructed, based on a cutoff radius applied
to each node of the network (see Fig. 1 and Supplementary Fig. S4).
All the nodes within that radius are connected with identical
springs, providing the potential energy for the model. In this study
all ANM calculations were performed for an all atom network with
a cutoff distance of 7 Å (see Supplementary Fig. S4). Next, the ma-
trix of second derivatives of the potential energy is computed, from
which the eigenvectors and eigen values are calculated. Eigenvec-
tors are also called normal mode shapes because they indicate the
direction and relative amplitude of distortions for each node in the
network. Eigen values correspond to the inverse squared frequen-
cies of motion for each mode. In a 3D network of N nodes ANM can
calculate up to 3N-6 modes (the 6 full network/structure transla-
tions and rotations relative the x, y, and z axis are ignored). Refer
to Atligan et al. [45] for mathematical description of the method.
We employed the Anisotropic Network Model implemented in
the software package MAVENs [69]. In addition, certain ANM sim-
ulation and analysis functions utilize MatLab functions (�Version
2010a, The MathWorks, Natick, MA).

MAVENs function calc_ISO_scale was used to calculate mean-
square fluctuations of all ENM nodes (i.e. all atoms in this case),
which are comparable to B-factors [42,63–65]. The scaling (nor-
malization) procedure is presented in the Supporting Information.
The results are plotted in Fig. 5b.

Visualization and analysis of the results was performed with the
aid of MAVENs, PyMOL (http://www.pymol.org/) and VMD (http://
www.ks.uiuc.edu/Research/vmd/) [70].

7.2.3. Energy minimization
Energy minimizations resulting in the structural corrections of

the cube models subjected to ANM were performed with Amber
10, employing the Cornell force field for RNA (ff99bsc0) and the
implicit solvent method GBSA [51–53]. To improve the accuracy
of the process, a large electrostatic interactions cut-off of 999 Å
was used to effectively include all the atoms of the models in these
energy component calculations.

For the calculation of the energy of the set of twelve helices
making up each cube (identical in size and nucleotide make-up
across the cube models) we removed the single-stranded corner
bridges from the minimized cube models and subjected the
remaining helices to new full minimizations. The first step energy
output was used to collect and analyze data on the energy compo-
nents from the helices, since it reflects their energy state at the end
of minimization with the corner bridges restraining the process.
The final results of the helix-only model minimizations for each
of the cubes showed energy convergence to a common level, thus
providing a control on the method.
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