
Anisotropic Network Modeling can produce eigenvectors

with a significant level of agreement with principal components from

molecular dynamics. The speed of ANM makes it an attractive

alternative for representing structural dynamics.

The cutoff method of generating the ANM connectivity matrix

generates eigenvectors with significantly more rapid cumulative

overlaps than the distance dependent method. All types of ANM are

capable of generating some normal modes that resemble principal

components, as measured by pairwise overlaps.

Scripting and streamlining the process of ANM from a single

starting state to analysis will result in increased readiness of ANM as a

tool for rapid characterization of structural dynamics. Tools for analysis

of eigenvectors that can look for visually defined motifs of motion will

further increase the usefulness of ANM in evaluating structural

assembly potential.

Effective and rapid visualization of normal modes is a critical

issue in accelerating the process of analysis using ANM. Solutions for

enhancing visualization are making the task of interpreting ANM data

more accessible.

Anisotropic Network Modeling (ANM) is a method for

computationally modeling structural dynamics in small molecules. This

type of modeling boasts a significant advantage over Molecular

Dynamics simulations in that it is far faster. Molecular Dynamics

simulations are sluggish in comparison to ANM, spanning multiple days,

whereas ANM can be run in as little as several hours for moderately

large structures like the nano-ring and nano-cube.

Two different variants of ANM are cutoff ANM and distance

dependent or power ANM. The difference lies in the mechanism used in

generating a connectivity matrix for the simulation. If a cutoff is used, all

atoms within a set radius (the cutoff) are connected, and none outside

of this radius. If a power dependency is used, all nodes are connected

to one another, and the strength of the connection varies as a function

of the distance between the nodes. Using different cutoff values and

powers has a noticeable effect on the normal modes predicted by ANM.

Multiple ANMs are presented for the nano-ring structure.

Some of the ANMs use the cutoff method for generating the connectivity

matrix, while others use the power method. Various cutoff values and

powers are explored. These ANMs are compared to the principal

components from a molecular dynamics trajectory for the nano-ring. The

comparison involves a measure of the cumulative overlap of multiple

modes spanning individual principal components, as well as pairwise

overlaps between one normal mode and one principal component.

Several tools are implemented to fully automate the process

of ANM simulation, a tedious process involving many separate scripts

and command calls, which vary depending upon a collection of

parameters assigned at the beginning of an ANM run. Included is a new

mode visualizer. The automation of the ANM streamlines the process

necessary to run ANM, and increases its speed advantage. This

enables the extensive analysis of structures through ANM by removing

the excessive time requirement for manually running ANM simulations

and individually animating modes, saving variables, and managing large

file structures.

Tools are presented that were developed for enhanced

visualization of normal modes and principal components. A program

color codes PDB files atom by atom corresponding to b-factors

calculated from eigenvectors and eigenvalues, creating a map of

relative motion. Another program animates combinations of normal

modes or principal components, with the option of weighing the

contribution of individual eigenvectors manually, or with a list of

eigenvalues. Tools for the analysis of eigenvectors are presented,

including a program that measures the change in proximity of clusters of

atoms across eigenvectors, and a program that searches for the

transition to a target state in the eigenvectors. These programs are of

potential interest for exploring structural assembly, or for identifying

modes demonstrating certain interesting motifs of motion.
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• Computationally modeling RNA 

structural dynamics is useful for 

predicting structural assembly potential 

and stability.

• Elastic Network Modeling (ENM) and 

Molecular Dynamics (MD) are 

approaches that are used for 

computational modeling of structural 

dynamics in small molecules such as 

protein and RNA. 

• Molecular Dynamics simulations are 

computationally intensive, requiring 

extended amounts of time (measured 

in days or weeks) to generate results, 

and are currently impractical for large 

models, such as the nano-cube.

• Elastic Network Modeling is relatively 

fast, and can be completed in as little 

as a few hours for the nano-ring or 

nano-cube models.

Nano-ring

Nano-cube

• Elastic Network Modeling Represents an molecule as a ball and 

spring network where nodes are connected to neighboring nodes by 

“springs” of uniform strength.

• The distance at which atoms are no longer considered to be in contact 

is a constant cutoff value. Applying spring connections between atoms 

within this cutoff radius produces a connectivity matrix.

• Because ENM is based upon a unique connectivity matrix, structural 

shape is the most important factor in the determination of motion.

3.5 Å• Created a tool for visualization 

of the connectivity matrix of a 

structure in PDB format, given 

an arbitrary cutoff value ( see 

images of nucleotide pairs to 

the right). 

• These are visualizations of the 

hypothetical connectivity 

matrices for a nucleotide pair 

with a cutoff of 3.5 and 7 

Angstroms. 

• ANM computes eigenvector 

and eigenvalue pairs, which 

each represent a unique 

normal mode of motion. 

7.0 Å

• Distance dependent ANM, or power ANM, is different from unaltered 

ANM in that it treats all nodes as connected, and varies the strength of 

springs between nodes as a power of the distance between them 

(1/distance^n). 

• Power ANM runs do not use a cutoff, but instead can be performed 

with a varying power, thus altering the significance of distance in the 

weighting of spring strength.

• Eigenvectors computed for an ANM can be interpreted as 

representing expected normal modes of motion of a structure.

• Normal modes can be visually represented by the linear transition 

between two structural configurations.

First nonzero normal mode 
of the nano-cube from ANM 

with a cutoff value of 7 Å

Third nonzero normal mode 
for nano-ring from ANM with 

a cutoff value of 7 Å

ANM Mode 3ANM Mode 1

• Altering the cutoff of nodes connected in ANM, or altering the power 

used for scaling the strength of springs in power ANM, can result in 

significant changes in eigenvectors and eigenvalues. 

• These differences suggest the possibility of finding an “optimal” cutoff 

value or power for a given model, as measured by agreement with 

Molecular Dynamics results, or  agreement with experimental data.

Mode 4 from ANM with 
cutoffs of 6 and 8

Mode 7 from power ANM 
with powers of 2 and 3

Normal modes show some 
differences due to change 

of 2 Å in cutoff

Large differences are visible 
between the same normal 

modes with various powers.

• Principal Components calculated from a  Molecular Dynamics trajectory contain eigenvectors and eigenvalues and can be compared to those from ANM 

simulations.

• Varying the type of ANM (cutoff-based ANM or power ANM) and the parameters of these simulations generates different eigenvectors and eigenvalues that will 

correlate differently to Principal Components from Molecular Dynamics.

• Cumulative overlap measures how well the first n modes can capture the motion of a single principal component, while pairwise overlaps measure how well 

individual modes span individual principal components.

• Presented below are cumulative and pairwise overlap comparisons between ANM , power ANM, and Principal Components from Molecular Dynamics. All of 

these simulations were done on the nano-ring.

Num. 

Modes

PC 1 PC 2 PC 3 PC 4

1 .7738 .3130 .2290 .4315

2 .8533 .9483 .2725 .4374

3 .9672 .9547 .2725 .9613

4 .9766 .9773 .9853 .9662

5 .9888 .9793 .9856 .9723

6 .9888 .9806 .9857 .9873

Cumulative Overlaps

Num. 

Modes

PC 1 PC 2 PC 3 PC 4

1 .7375 .2018 .2280 .5429

2 .7427 .9116 .4631 .5438

3 .9730 .9242 .6315 .8088

4 .9765 .9774 .9855 .9661

5 .9884 .9796 .9857 .9719

6 .9884 .9813 .9857 .9864

Num. 

Modes

PC 1 PC 2 PC 3 PC 4

1 .1603 .8778 .4058 .0454

2 .7213 .8792 .4733 .6112

3 .9408 .9297 .6824 .7989

4 .9768 .9763 .9859 .9659

5 .9882 .9788 .9860 .9716

6 .9882 .9804 .9861 .9867

ANM, Cutoff 6 Å

ANM, Cutoff 7 Å

ANM, Cutoff 8 Å

Num. 

Modes

PC 1 PC 2 PC 3 PC 4

1 .8291 .0396 .0035 .4710

2 .8359 .8971 .2690 .5288

3 .8360 .8982 .2720 .5288

4 .8360 .8993 .2730 .5542

5 .8374 .9043 .2731 .5542

6 .8472 .9048 .2731 .5576

Num. 

Modes

PC 1 PC 2 PC 3 PC 4

1 .8353 .1442 .0351 .4387

2 .8353 .8957 .2687 .5282

3 .8355 .8967 .2717 .5282

4 .8355 .8978 .2727 .5537

5 .8378 .9044 .2727 .5543

6 .8490 .9050 .2735 .5568

Num. 

Modes

PC 1 PC 2 PC 3 PC 4

1 .8240 .2962 .0811 .3790

2 .8354 .8947 .2675 .5269

3 .8356 .8957 .2704 .5269

4 .8356 .8967 .2714 .5528

5 .8484 .8996 .2718 .5624

6 .8764 .9299 .3137 .6381

Power ANM, power 2 

Power ANM, power 2.5

Power ANM, power 3 

Pairwise Overlaps

• Visualizations of the best pairwise overlaps for individual normal modes 

and PCs. Normal modes are colored in blue, PCs in yellow.

Mode 10 from ANM with 
cutoff 6, and PC 3

Mode 8 from ANM with 
cutoff 7, and PC 2

Mode 7 from ANM with 
cutoff 8, and PC 2

• Cutoff ANM shows much earlier high cumulative overlaps than power ANM. Some of 

the top 4 PCs require as many as 21 modes from power ANM for 90% overlap.

Mode 8 from power ANM with 
power 3, and PC 2

• B-factors, also known as Debye-Waller 

factors or temperature factors, are a 

measure of relative motion that can be 

calculated from the eigenvectors and 

eigenvalues produced by ANM, or by 

Principal Component Analysis of Molecular 

Dynamics.

• Created a tool to color the atoms of a PDB 

structure corresponding to a list of 

b-factors.

• The method in which colors are assigned 

can be selected. In one approach, the 

program attempts to create an equal 

number of atoms of each color (see right). 

Another alternative is to use a linear scale 

for coloration.

Enhanced Visualization 

Mode 7 from ANM with cutoff of 7 Å

Modes 8 and 9 from 
ANM with cutoff 7 Å

• Created a tool to visualize multiple eigenvectors. The program uses the animation 

method of the perl mode visualizer (see ANM Scripting). 

• The vectors used for the animation can be either a simple mean of multiple 

eigenvectors, or eigenvectors can be weighted corresponding to their eigenvalues.

• The resulting animation will represent the motions of two or more normal modes 

or principal components.

Combined modes 8 and 9

Tools for Analysis
• Created tool to measure 

proximity of clusters of atoms, 

and organize eigenvectors by 

how well they bring those atoms 

together or apart.

• Can be utilized to search for 

modes of motion or principal 

components that suggest 

structural assembly, such as the 

closing of the tectosquare

(found in the second mode from 

ANM with cutoff 7 Å

• Created a  tool to look for transition between certain 

configurations or states of molecules in eigenvectors. 

• One possible application includes looking for modes of 

motion or principal components showing transition between 

various arm orientations of the nano-rings with attached 

siRNA arms.

Open Tectosquare

Overlay of two nano-ring models with 
different siRNA arm orientations.

Mode 8 from power ANM with 
power 2, and PC 2

Mode 16 from power ANM 
with power 2.5, and PC 3

Scripting of ANM and Improved 

Mode Visualizer

• The main attraction of Anisotropic Network Modeling is the significant increase in speed 

it offers when compared to Molecular Dynamics. 

• Scripted the entire process of both ANM and power ANM from start to finish. This 

optimizes the speed advantage of these methods. The total autonomy allows the user to 

skip straight to analysis of results rather than manage the multiple steps of ANM and 

power ANM.

7. Results are ready 

for analysis.

1. User inputs a list of types 

of ANMs to run and 

parameters (cutoff, power). 

They can also request 

animation of the top n modes.

User does 

something else.

2. Gathers only the 

scripts necessary to 

process the user’s 

requests.

3. Calls matlab

functions and scripts 

for ANM and/or power 

ANM

4. Cleans up 

scripts/files 

the user does 

not need.

5. Saves eigenvectors, 

eigenvalues, b-factors, 

and matlab state 

(evidence of any errors).

6. Passes modes to 

perl mode visualizer, 

and/or the b-factor 

plotter (see “Enhanced 

visualization”).

Automation 
of ANM

• Created a mode visualizer for animating eigenvectors. The new mode visualizer uses 

perl, and demonstrates a dramatic increase in efficiency over the modeAnimator

function previously used, which is a MATLAB function.

• The new mode visualizer can animate a normal mode of the nano-ring in seconds, while 

the MATLAB version requires 5-10 minutes. This speed increase allows for the 

animation of a large number of modes without a significant addition to computation time.

• The animation of eigenvectors is performed by slowly transitioning a structure’s atoms 

to new locations along a vector, whose direction and relative magnitude is determined 

by the eigenvector. An arbitrary scaling factor is applied to the transition.

Start 

state

+ Scaling Factor

- Scaling Factor

Start state

Start state

Structure of Eigenvector 
Animations


